Description

The SSC3S910 is a controller with SMZ* method for LLC current resonant switching power supplies, incorporating a floating drive circuit for a high-side power MOSFET. The product includes useful functions such as Auto Standby Function, Overload Protection with input voltage compensation, Automatic Dead Time Adjustment, and Capacitive Mode Detection.

The product achieves high efficiency, low noise and high cost-performance power supply systems with few external components.
*SMZ: Soft-switched Multi-resonant Zero Current switch, achieved soft switching operation during all switching periods.

Features

- Auto Standby Function
- Output Power at Light Load: $\mathrm{P}_{\mathrm{O}}=125 \mathrm{~mW}$ ($\mathrm{P}_{\mathrm{IN}}=0.27 \mathrm{~W}$, as a reference with discharge resistor of $1 \mathrm{M} \Omega$ for across the line capacitor)
- Burst operation in standby mode
- Soft-on/Soft-off function: reduces audible noise
- Selectable Standby Operation Point Function
- Realizing power supply with universal mains input voltage
- Soft-start Function
- Capacitive Mode Detection Function
- Reset Detection Function
- Automatic Dead Time Adjustment Function
- Brown-In and Brown-Out Function
- Built-in Startup Circuit
- Input Electrolytic Capacitor Discharge Function
- Protections
- High-side Driver UVLO : Auto-restart
- Overcurrent Protection (OCP) : Auto-restart, peak drain current detection, 2 -step detection
- Overload Protection (OLP) with Input Voltage Compensation : Auto-restart
- Overvoltage Protection (OVP) : Auto-restart
- Thermal Shutdown (TSD) : Auto-restart

Package

SOP18

Not to scale

Application

Switching power supplies for electronic devices such as:

- Digital appliances: LCD television and so forth
- Office automation (OA) equipment: server, multifunction printer, and so forth
- Industrial apparatus
- Communication facilities

Typical Application

CONTENTS

Description -1
CONTENTS -2

1. Absolute Maximum Ratings -3
2. Electrical Characteristics -4
3. Block Diagram -7
4. Pin Configuration Definitions -7
5. Typical Application 8
6. External Dimensions -9
7. Marking Diagram 9
8. Operational Description 10
8.1 Resonant Circuit Operation 10
8.2 Startup Operation 13
8.3 Undervoltage Lockout (UVLO) 13
8.4 Bias Assist Function 13
8.5 Soft Start Function 14
8.6 Minimum and Maximum Switching Frequency Setting 14
8.7 High-side Driver 14
8.8 Constant Voltage Control Operation 15
8.9 Standby Function 15
8.9.1 Auto Standby Function 16
8.9.2 Standby Mode Changed by External Signal 17
8.9.3 Burst Oscillation Operation 17
8.10 Automatic Dead Time Adjustment Function 18
8.11 Brown-In and Brown-Out Function 18
8.12 Capacitive Mode Detection Function 19
8.13 Input Electrolytic Capacitor Discharge Function 20
8.14 Reset Detection Function 20
8.15 Overvoltage Protection (OVP) 22
8.16 Overcurrent Protection (OCP) 22
8.17 Overload Protection (OLP) with Input Voltage Compensation 23
8.17.1 Overload Protection (OLP) 23
8.17.2 OLP Input Voltage Compensation Function 24
8.18 Thermal Shutdown (TSD) 25
9. Design Notes 26
9.1 External Components 26
9.1.1 Input and Output Electrolytic Capacitors 26
9.1.2 Resonant Transformer 26
9.1.3 Current Detection Resistor, $\mathbf{R}_{\text {OCP }}$ 26
9.1.4 Current Resonant Capacitor, $\mathbf{C i}$ 26
9.1.5 Gate Pin Peripheral Circuit 26
9.2 PCB Trace Layout and Component Placement 26
10. Pattern Layout Example 28
11. Reference Design of Power Supply 29
IMPORTANT NOTES 32

1. Absolute Maximum Ratings

- The polarity value for current specifies a sink as "+," and a source as "-," referencing the IC.
- Unless otherwise specified, T_{A} is $25^{\circ} \mathrm{C}$

Characteristic	Symbol	Pins	Rating	Unit
VSEN Pin Voltage	$\mathrm{V}_{\mathrm{SEN}}$	$1-10$	-0.3 to 10	V
Control Part Input Voltage	V_{CC}	$2-10$	-0.3 to 35	V
FB Pin Voltage	V_{FB}	$3-10$	-0.3 to 6	V
ADJ Pin Voltage	$\mathrm{V}_{\mathrm{ADJ}}$	$4-10$	-0.3 to 10	V
CSS Pin Voltage	$\mathrm{V}_{\mathrm{CSS}}$	$5-10$	-0.3 to 6	V
CL Pin Voltage	V_{CL}	$6-10$	-0.3 to 6	V
RC Pin Voltage	V_{RC}	$7-10$	-6 to 6	V
PL Pin Voltage	V_{PL}	$8-10$	-0.3 to 6	V
SB Pin Sink Current	I_{SB}	$9-10$	100	$\mu \mathrm{~A}$
VGL pin Voltage	V_{GL}	$11-10$	-0.3 to $\mathrm{V}_{\mathrm{REG}}+0.3$	V
REG pin Source Current	$\mathrm{I}_{\mathrm{REG}}$	$12-10$	-10.0	mA
Voltage Between VB Pin and VS Pin	$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{S}}$	$14-15$	-0.3 to 20.0	V
VS Pin Voltage	V_{S}	$15-10$	-1 to 600	V
VGH Pin Voltage	V_{GH}	$16-10$	$\mathrm{~V}_{\mathrm{S}}-0.3$ to $\mathrm{V}_{\mathrm{B}}+0.3$	V
ST Pin Voltage	V_{ST}	$18-10$	-0.3 to 600	V
Operating Ambient Temperature	T_{OP}	-	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-	-40 to 125	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{j}	-	150	${ }^{\circ} \mathrm{C}$

* Surge voltage withstand (Human body model) of No.14, 15 and 16 is guaranteed 1000 V . Other pins are guaranteed 2000 V .

2. Electrical Characteristics

- The polarity value for current specifies a sink as "+," and a source as "-," referencing the IC.
- Unless otherwise specified, T_{A} is $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ is 19 V

Characteristic	Symbol	Conditions	Pins	Min.	Typ.	Max.	Unit
Start Circuit and Circuit Current							
Operation Start Voltage	$\mathrm{V}_{\text {CC(ON) }}$		2-10	12.9	14.0	15.1	V
Operation Stop Voltage ${ }^{1}$	$\mathrm{V}_{\text {CC(OFF) }}$		2-10	7.8	8.8	9.8	V
Startup Current Biasing Threshold Voltage*	$\mathrm{V}_{\text {CC(BIAS })}$		2-10	8.8	9.8	10.8	V
Circuit Current in Operation	$\mathrm{I}_{\text {CC(ON) }}$		2-10	-	-	10.0	mA
Circuit Current in Non-Operation	$\mathrm{I}_{\text {CC(OFF) }}$	$\mathrm{V}_{\text {CC }}=8 \mathrm{~V}$	2-10	-	0.7	1.5	mA
Startup Current	$\mathrm{I}_{\mathrm{CC}(\mathrm{ST})}$		18-10	3.0	6.0	9.0	mA
VCC Pin Protection Circuit Release Threshold Voltage*	$\mathrm{V}_{\text {CC(P.OFF) }}$		2-10	7.8	8.8	9.8	V
Circuit Current in Protection	$\mathrm{I}_{\mathrm{CC}(\mathrm{P})}$	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	$2-10$	-	0.7	1.5	mA
Oscillator							
Minimum Frequency	$\mathrm{f}_{\text {(MIN) }}$		$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	28.5	32.0	36.5	kHz
Maximum Frequency	$\mathrm{f}_{(\mathrm{MAX})}$		$\begin{aligned} & \hline 11-10 \\ & 16-15 \\ & \hline \end{aligned}$	230	300	380	kHz
Minimum Dead-Time	$\mathrm{t}_{\text {(MIN })}$		$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	0.20	0.35	0.50	$\mu \mathrm{s}$
Maximum Dead-Time	$\mathrm{t}_{\mathrm{d} \text { (MAX) }}$		$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	1.20	1.65	2.20	$\mu \mathrm{s}$
Externally Adjusted Minimum Frequency	$\mathrm{f}_{\text {(MIN)ADJ }}$	$\mathrm{R}_{\mathrm{CsS}}=30 \mathrm{k} \Omega$	$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	70	74	78	kHz
Feedback Control							
FB Pin Oscillation Start Threshold Voltage	$\mathrm{V}_{\mathrm{FB} \text { (ON) }}$		$3-10$	0.15	0.30	0.45	V
FB Pin Oscillation Stop Threshold Voltage	$\mathrm{V}_{\mathrm{FB} \text { (OfF) }}$		3-10	0.05	0.20	0.35	V
FB Pin Maximum Source Current	$\mathrm{I}_{\mathrm{FB} \text { (MAX) }}$	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	3-10	-300	- 195	-100	$\mu \mathrm{A}$
Soft-start							
CSS Pin Charging Current	$\mathrm{I}_{\text {CSS(C) }}$		5-10	-120	- 105	-90	$\mu \mathrm{A}$
CSS Pin Reset Current	$\mathrm{I}_{\mathrm{CSS}(\mathrm{R})}$	$\mathrm{V}_{\text {CC }}=8 \mathrm{~V}$	5-10	1.2	1.8	2.4	mA
Maximum Frequency in Soft-start	$\mathrm{f}_{(\mathrm{MAX}) \mathrm{SS}}$		$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	300	400	500	kHz
Standby							
SB Pin Standby Threshold Voltage	$\mathrm{V}_{\text {SB(STB) }}$		$9-10$	4.5	5.0	5.5	V
SB Pin Oscillation Start Threshold Voltage	$\mathrm{V}_{\mathrm{SB} \text { (ON) }}$		$9-10$	0.5	0.6	0.7	V
SB Pin Oscillation Stop Threshold Voltage	$\mathrm{V}_{\text {SB(OFF) }}$		9-10	0.4	0.5	0.6	V
SB Pin Clamp Voltage	$\mathrm{V}_{\text {SB(CLAMP) }}$		$9-10$	7.1	8.4	9.8	V

${ }^{1} \mathrm{~V}_{\mathrm{CC}(\text { OFF })}=\mathrm{V}_{\mathrm{CC}(\mathrm{P} . \mathrm{OFF})}<\mathrm{V}_{\mathrm{CC}(\mathrm{BIAS})}$ always.

Characteristic	Symbol	Conditions	Pins	Min.	Typ.	Max.	Unit
SB Pin Source Current	$\mathrm{I}_{\text {SB(SRC) }}$		9-10	-20	-10	-4	$\mu \mathrm{A}$
SB Pin Sink Current	$\mathrm{I}_{\text {SB(SNK) }}$		9-10	4	10	20	$\mu \mathrm{A}$
SB Pin Photo-coupler Detection Voltage	$\mathrm{V}_{\mathrm{SB}(\mathrm{PC})}$		9-10	6.1	7.0	7.6	V
Selectable Standby Operation Point Function							
ADJ Pin Threshold Voltage (1)	$\mathrm{V}_{\text {ADJ1 }}$		4-10	0.85	1.00	1.15	V
ADJ Pin Threshold Voltage (2)	$\mathrm{V}_{\text {ADJ2 }}$		4-10	1.85	2.00	2.15	V
ADJ Pin Threshold Voltage (3)	$\mathrm{V}_{\text {ADJ3 }}$		4-10	2.85	3.00	3.15	V
ADJ Pin Source Current	$\mathrm{I}_{\text {ADJ }}$		4-10	-12.0	-10.2	-8.5	$\mu \mathrm{A}$
CL Pin Standby Threshold Voltage (1) when ADJ Pin is grounded	$\mathrm{V}_{\text {CL(STB)_G1 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SEN}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ADJ}}=\mathrm{GND} \end{aligned}$	6-10	0.24	0.30	0.36	V
CL Pin Standby Threshold Voltage (4) when ADJ Pin is grounded	$\mathrm{V}_{\text {CL(STB)_G4 }}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {SEN }}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ADJ}}=\mathrm{GND} \\ \hline \end{array}$	6-10	0.04	0.09	0.15	V
CL Pin Standby Threshold Voltage (1) when ADJ Pin is open	$\mathrm{V}_{\text {CL(STB)_O1 }}$	$\begin{array}{\|l} \hline \mathrm{V}_{\text {SEN }}=1.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ADJ}}=\text { Open } \\ \hline \end{array}$	6-10	1.00	1.21	1.40	V
CL Pin Standby Threshold Voltage (4) when ADJ Pin is open	$\mathrm{V}_{\text {CL(STB)_O4 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SEN}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ADJ}}=\text { Open } \\ & \hline \end{aligned}$	6-10	0.26	0.36	0.46	V
Overload Protection (OLP) with Input Voltage Compensation							
CL pin OLP Threshold Voltage (1)	$\mathrm{V}_{\text {CL(OLP) } 1}$	$\mathrm{V}_{\text {SEN }}=1.5 \mathrm{~V}$	6-10	3.80	4.08	4.30	V
CL pin OLP Threshold Voltage (2)	$\mathrm{V}_{\text {CL(OLP) } 2}$	$\mathrm{V}_{\text {SEN }}=2.0 \mathrm{~V}$	6-10	3.05	3.43	3.85	V
CL pin OLP Threshold Voltage (3)	$\mathrm{V}_{\text {CL(OLP) }}$	$\mathrm{V}_{\text {SEN }}=4.0 \mathrm{~V}$	6-10	1.60	1.83	2.10	V
CL pin OLP Threshold Voltage (4)	$\mathrm{V}_{\text {CL(OLP)4 }}$	$\mathrm{V}_{\text {SEN }}=5.0 \mathrm{~V}$	6-10	1.05	1.29	1.55	V
CL Pin Source Current	$\mathrm{I}_{\text {CL(SRC) }}$		6-10	-29	-17	-5	$\mu \mathrm{A}$
Brown-In and Brown-Out							
VSEN Pin Threshold Voltage (On)	$\mathrm{V}_{\text {SEN(ON) }}$		1-10	1.248	1.300	1.352	V
VSEN Pin Threshold Voltage (Off)	$\mathrm{V}_{\text {SEN(OFF) }}$		1-10	1.056	1.100	1.144	V
Reset Detection							
Maximum Reset Time	$\mathrm{t}_{\text {RST(MAX) }}$		$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	13	15	19	$\mu \mathrm{s}$
Driver Circuit Power Supply							
VREG Pin Output Voltage	$\mathrm{V}_{\text {REG }}$		12-10	9.2	10.0	10.8	V
High-side Driver							
High-side Driver Operation Start Voltage	$\mathrm{V}_{\text {BUV(ON) }}$		14-15	5.9	6.8	8.3	V
High-side Driver Operation Stop Voltage	$\mathrm{V}_{\text {BUV(OFF) }}$		14-15	5.5	6.4	7.2	V
Driver Circuit							
VGL,VGH Pin Source Current 1	$\mathrm{I}_{\text {GL(SRC) } 1}$ $\mathrm{I}_{\mathrm{GH}(\mathrm{SRC}) 1}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{REG}}=10.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=10.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GH}}=0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	-	-540	-	mA
VGL,VGH Pin Sink Current 1	$\mathrm{I}_{\mathrm{GL}(\mathrm{SNK}) 1}$ $\mathrm{I}_{\mathrm{GH}(\mathrm{SNK}) 1}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{REG}}=10.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=10.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GL}}=10.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GH}}=10.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	-	1.50	-	A

SSC3S910

Characteristic	Symbol	Conditions	Pins	Min.	Typ.	Max.	Unit
VGL,VGH Pin Source Current 2	$\mathrm{I}_{\mathrm{GL}(\mathrm{SRC})_{2}}$ $\mathrm{I}_{\mathrm{GH}(\mathrm{SRC}) 2}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{REG}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GL}}=10.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GH}}=10.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	-140	-90	-40	mA
VGL,VGH Pin Sink Current 2	$\mathrm{I}_{\text {GL(SNK)2 }}$ $\mathrm{I}_{\mathrm{GH}(\mathrm{SNK}) 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{REG}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GL}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GH}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11-10 \\ & 16-15 \end{aligned}$	140	250	360	mA
Current Resonant and Overcurrent Protection(OCP)							
Capacitive Mode Detection Voltage 1	$\mathrm{V}_{\mathrm{RC1}}$		$7-10$	0.02	0.10	0.18	V
				-0.18	-0.10	-0.02	V
Capacitive Mode Detection Voltage 2	$\mathrm{V}_{\mathrm{RC} 2}$		$7-10$	0.35	0.50	0.65	V
				-0.65	-0.50	-0.35	V
RC Pin Threshold Voltage (Low)	$\mathrm{V}_{\mathrm{RC}(\mathrm{L})}$		$7-10$	1.42	1.50	1.58	V
				-1.58	-1.50	- 1.42	V
RC Pin Threshold Voltage (High speed)	$\mathrm{V}_{\mathrm{RC}(\mathrm{S})}$		$7-10$	2.15	2.30	2.45	V
				-2.45	-2.30	-2.15	V
CSS Pin Sink Current (Low)	$\mathrm{I}_{\text {CSS(L) }}$		5-10	1.2	1.8	2.4	mA
CSS Pin Sink Current (High speed)	$\mathrm{I}_{\mathrm{CSS}(\mathrm{S})}$		5-10	13.0	20.5	28.0	mA
Overvoltage Protection (OVP)							
VCC Pin OVP Threshold Voltage	$\mathrm{V}_{\text {CC(OVP) }}$		2-10	29.5	32.0	34.5	V
Thermal Shutdown (TSD)							
Thermal Shutdown Temperature	$\mathrm{T}_{\mathrm{j} \text { (TSD) }}$		-	140	-	-	${ }^{\circ} \mathrm{C}$
Thermal Resistance							
Junction to Ambient Thermal Resistance	$\theta_{\mathrm{j}-\mathrm{A}}$		-	-	-	95	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3. Block Diagram

4. Pin Configuration Definitions

			18	Number	Name	Function
	\bigcirc_{VSEN}	ST		1	VSEN	The mains input voltage detection signal input
1				2	VCC	Supply voltage input for the IC, and Overvoltage Protection (OVP) signal input
2	VCC	(NC)	17	3	FB	Feedback signal input for constant voltage control
3	FB	VG	16	4	ADJ	Standby operation point setting
4	ADJ	VS	15	5	CSS	Soft-start capacitor connection
5	CSS	VB	14	6	CL	OLP Input Voltage Compensation capacitor connection
6	CL	(NC)	13	7	RC	Resonant current detection signal input, and Overcurrent Protection (OCP) signal input
7	RC	REG	12	8	PL	Resonant current detection signal input for OLP Input Voltage Compensation
8	PL	VGL	11	9	SB	Standby mode change signal input
9	SB		10	10	GND	Ground
		GND		11	VGL	Low-side gate drive output
				12	REG	Supply voltage output for gate drive circuit
				13	(NC)	-
				14	VB	Supply voltage input for high-side driver
				15	VS	Floating ground for high-side driver
				16	VGH	High-side gate drive output
				17	(NC)	-
				18	ST	Startup current input

5. Typical Application

The IC has the Auto Standby Function. Figure 5-1 shows the typical application circuit using the Auto Standby Function. Figure 5-2 shows the typical application circuit that standby operation is changed by external signal without the Auto Standby Function.

Figure 5-1 Typical application circuit (With Auto Standby Function)

Figure 5-2 Typical application circuit
(without Auto Standby Function, changed the standby operation by external signal)

6. External Dimensions

- SOP18

NOTES:

- Dimension is in millimeters
- Pb-free. Device composition compliant with the RoHS directive

7. Marking Diagram

8. Operational Description

All of the parameter values used in these descriptions are typical values, unless they are specified as minimum or maximum. With regard to current direction, " + " indicates sink current (toward the IC) and " - " indicates source current (from the IC).
$\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ indicate a high-side power MOSFET and a low-side power MOSFET respectively. Ci , and C_{V} indicate a current resonant capacitor and a voltage resonant capacitor respectively.

8.1 Resonant Circuit Operation

Figure 8-1 shows a basic RLC series resonant circuit.

Figure 8-1 RLC series resonant circuit

The impedance of the circuit, \dot{Z}, is as the following Equation.

$$
\begin{equation*}
\dot{\mathrm{Z}}=\mathrm{R}+\mathrm{j}\left(\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}\right) \tag{1}
\end{equation*}
$$

where, ω is angular frequency and $\omega=2 \pi \mathrm{f}$.

$$
\begin{equation*}
\dot{\mathrm{Z}}=\mathrm{R}+\mathrm{j}\left(2 \pi \mathrm{fL}-\frac{1}{2 \pi \mathrm{fC}}\right) \tag{2}
\end{equation*}
$$

When the frequency, f , changes, the impedance of resonant circuit will change as shown in Figure 8-2

Figure 8-2 Impedance of resonant circuit

In Equation (2), \dot{Z} becomes minimum value ($=\mathrm{R}$) at $2 \pi \mathrm{fL}=1 / 2 \pi \mathrm{fC}$, and then ω is calculated by Equation (3).

$$
\begin{equation*}
\omega=2 \pi \mathrm{f}=\frac{1}{\sqrt{\mathrm{LC}}} \tag{3}
\end{equation*}
$$

The frequency in which \dot{Z} becomes minimum value is the resonant frequency, f_{0}. The higher frequency area than f_{0} is the inductance area, and the lower frequency area than f_{0} is the capacitance area.

From Equation (3), f_{0} is as follows;

$$
\begin{equation*}
\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \tag{4}
\end{equation*}
$$

Figure 8-3 shows the circuit of a current resonant power supply. The basic configuration of the current resonant power supply is a half-bridge converter. The switching device $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ are connected in series with V_{IN}. The series resonant circuit and the voltage resonant capacitor C_{V} are connected in parallel with $\mathrm{Q}_{(\mathrm{L})}$. The series resonant circuit is comprised of a resonant inductor L_{R}, a primary winding P of a transformer T 1 and a current resonant capacitor C_{i}.
In the resonant transformer T1, the coupling between primary winding and secondary winding is designed to be poor so that the leakage inductance increases. By using it as LR, the series resonant circuit can be down sized. The dotted mark in T1 shows the winding polarity, the secondary windings S1 and S2 are connected so that the polarities are set to the same position shown in Figure 8-3, and the winding numbers of each other are equal.

From Equation (1), the impedance of current resonant power supply is calculated by Equation (5). From Equation (4), the resonant frequency, f_{0}, is calculated by Equation (6).

$$
\begin{align*}
& \dot{\mathrm{Z}}=\mathrm{R}+\mathrm{j}\left\{\omega\left(\mathrm{~L}_{\mathrm{R}}+\mathrm{L}_{\mathrm{P}}\right)-\frac{1}{\omega \mathrm{Ci}}\right\} \tag{5}\\
& \mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\left(\mathrm{~L}_{\mathrm{R}}+\mathrm{L}_{\mathrm{P}}\right) \times \mathrm{Ci}}} \tag{6}
\end{align*}
$$

where,
R : the equivalent resistance of load
L_{R} : the inductance of the resonant inductor
L_{P} : the inductance of the primary winding P
Ci : the capacitance of current resonant capacitor

Figure 8-3 Current resonant power supply circuit

In the current resonant power supply, $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ are alternatively turned on and off. The on time and off time of them are equal. There is a dead time between $\mathrm{Q}_{(\mathrm{H})}$ on period and $\mathrm{Q}_{(\mathrm{L})}$ on period. During the dead time, both $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ are in off status.

The current resonant power supply is controlled by the frequency control. When the output voltage decreases, the IC makes the switching frequency low so that the output power is increased and the output voltage is kept constant. This control must operate in the inductance area $\left(f_{\text {SW }}>f_{0}\right)$. Since the winding current is delayed from the winding voltage in the inductance area, the turn-on operation is ZCS (Zero Current Switching) and the turn-off operation is ZVS (Zero Voltage Switching). Thus, the switching loss of $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ is nearly zero,

In the capacitance area $\left(\mathrm{f}_{\mathrm{SW}}<\mathrm{f}_{0}\right)$, the current resonant power supply operates as follows. When the output voltage decreases, the switching frequency is decreased, and then the output power is more decreased. Thus, the output voltage cannot be kept constant. Since the winding current goes ahead of the winding voltage in the capacitance area, the operation with hard switching occurs in $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$. Thus, the power loss increases.

This operation in the capacitance area is called the capacitive mode operation. The current resonant power supply must be operated without the capacitive mode operation (refer to Section 8.12 about details of it).

Figure 8-4 shows the basic operation waveform of current resonant power supply (see Figure 8-3 about the symbol in Figure 8-4). The current resonant waveforms in normal operation are divided a period A to a period F . The current resonant power supply operates in the each period as follows.

In following description,
$\mathrm{I}_{\mathrm{D}(\mathrm{H})}$ is the current of $\mathrm{Q}_{(\mathrm{H})}$,
$\mathrm{I}_{\mathrm{D}(\mathrm{L})}$ is the current of $\mathrm{Q}_{(\mathrm{L})}$,
$\mathrm{V}_{\mathrm{F}(\mathrm{H})}$ is the forwerd voltage of $\mathrm{Q}_{(\mathrm{H})}$,
$V_{F(L)}$ is the forwerd voltage of $Q_{(L)}$,
I_{L} is the current of L_{R},
$\mathrm{V}_{\text {IN }}$ is an input voltage,
V_{Ci} is Ci voltage, and
V_{CV} is C_{V} voltage.

1) Period A

When $\mathrm{Q}_{(\mathrm{H})}$ is ON , energy is stored into the series resonant circuit by $\mathrm{I}_{\mathrm{D}(\mathrm{H})}$ flowing through the resonant circuit and the transformer as shown in Figure 8-5. At the same time, the energy is transferred to the secondary circuit. When the primary winding voltage can not keep the secondary rectifier ON, the energy to the secondary circuit is stopped.

2) Period B

After the secondary side current becomes zero, the resonant current flows to the primary side only as shown in Figure 8-6 and Ci is charged by it.

Figure 8-4 The basic operation waveforms of current resonant power supply

Figure 8-5 Operation in period A

Figure 8-6 Operation in period B
3) Period C

Pireod C is the dead-time. Both $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ are in off-state.
When $\mathrm{Q}_{(\mathrm{H})}$ turns off, I_{L} is flowed by the energy stored in the series resonant circuit as shown in Figure 8-7, and C_{V} is discharged. When V_{CV} decreases to $\mathrm{V}_{\mathrm{F}(\mathrm{L})}$, $-I_{D(L)}$ flows through the body diode of $Q_{(L)}$ and $V_{C V}$ is clamped to $\mathrm{V}_{\mathrm{F}(\mathrm{L})}$.
After that, $\mathrm{Q}_{(\mathrm{L})}$ turns on. Since $\mathrm{V}_{\mathrm{DS}(\mathrm{L})}$ is nearly zero at the point, $\mathrm{Q}_{(\mathrm{L})}$ operates in ZVS and ZCS. Thus, switching loss is nearly zero.

4) Period D

When $\mathrm{Q}_{(\mathrm{L})}$ turns on, $\mathrm{I}_{\mathrm{D}(\mathrm{L})}$ flows as shown in Figure 8-8 and the primary winding voltage of the transformer adds V_{Ci}. At the same time, energy is transferred to the secondary circuit. When the primary winding voltage can not keep the secondary rectifier ON, the energy to the secondary circuit is stopped.

5) Period E

After the secondary side current becomes zero, the resonant current flows to the primary side only as shown in Figure 8-9 and Ci is charged by it.

6) Period F

This pireod is the dead-time. Both $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ are in off-state.
When $\mathrm{Q}_{(\mathrm{L})}$ turns off, $-\mathrm{I}_{\mathrm{L}}$ is flowed by the energy stored in the series resonant circuit as shown in Figure $8-10 . \mathrm{C}_{\mathrm{V}}$ is discharged. When V_{CV} decreases to $\mathrm{V}_{\mathrm{IN}}+$ $\mathrm{V}_{\mathrm{F}(\mathrm{H})}$, $-\mathrm{I}_{\mathrm{D}(\mathrm{H})}$ flows through body diode of $\mathrm{Q}_{(\mathrm{H})}$ and V_{CV} is clamped to $\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{F}(\mathrm{H})}$.
After that, $\mathrm{Q}_{(\mathrm{H})}$ turns on. Since $\mathrm{V}_{\mathrm{DS}(\mathrm{H})}$ is nearly zero at the point, $\mathrm{Q}_{(\mathrm{H})}$ operates in ZVS and ZCS. Thus, the switching loss is nearly zero.

7) After the Period F

Then, $\mathrm{I}_{\mathrm{D}(\mathrm{H})}$ flows and the operation returns to the period A.

The above operation is repeated, the energy is transferred to the secondary side from the resonant circuit.

Figure 8-7 Operation in period C

Figure 8-8 Operation in period D

Figure 8-9 Operation in period E

Figure 8-10 Operation in period F

8.2 Startup Operation

Figure 8-11 shows the VCC pin peripheral circuit.
When the following all conditions are fulfilled, the IC starts the startup operation:

- The mains input voltage is provided, and the VSEN pin voltage increases to the on-threshold voltage, $\mathrm{V}_{\mathrm{SEN}(\mathrm{ON})}=1.300 \mathrm{~V}$, or more.
- The startup current, $\mathrm{I}_{\mathrm{CC}(\mathrm{ST})}$, which is a constant current of 6.0 mA , is provided from the IC to capacitor C2 connected to the VCC pin, C 2 is charged, and the VCC pin voltage increases to the operation start voltage, $\mathrm{V}_{\mathrm{CC}(\mathrm{ON})}=14.0 \mathrm{~V}$, or more.
- The FB pin voltage increases to the oscillation start threshold voltage, $\mathrm{V}_{\mathrm{FB}(\mathrm{ON})}=0.30 \mathrm{~V}$, or more.

After that, the startup circuit stops automatically, in order to eliminate its own power consumption.

During the IC operation, the rectified voltage from the auxiliary winding voltage, V_{D}, of Figure 8-11 is a power source to the VCC pin.

The winding turns of the winding D should be adjusted so that the VCC pin voltage is applied to equation (7) within the specification of the mains input voltage range and output load range of the power supply. The target voltage of the winding D is about 19 V .

$$
\begin{align*}
& \mathrm{V}_{\mathrm{CC}(\mathrm{BIAS})}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CC}(\mathrm{OVP})} \\
& \Rightarrow 9.8(\mathrm{~V})<\mathrm{V}_{\mathrm{CC}}<32.0(\mathrm{~V}) \tag{7}
\end{align*}
$$

The startup time, $\mathrm{t}_{\text {START }}$, is determined by the value of C2 and C6 connected to the CSS pin. Since the startup time for C 6 is much smaller than that for C 2 , the startup time is approximately given as below:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{START}} \approx \mathrm{C} 2 \times \frac{\mathrm{V}_{\mathrm{CC}(\mathrm{ON})}-\mathrm{V}_{\mathrm{CC}(\mathrm{INT})}}{\left|\mathrm{I}_{\mathrm{CC}(\mathrm{ST})}\right|} \tag{8}
\end{equation*}
$$

where:
$\mathrm{t}_{\text {START }}$ is the startup time in s ,
$\mathrm{V}_{\mathrm{CC}(\mathrm{INT})}$ is the initial voltage of the VCC pin in V , and
$\mathrm{I}_{\mathrm{CC}(\mathrm{ST})}$ is the startup current, 6.0 mA

Figure 8-11 VCC pin peripheral circuit

8.3 Undervoltage Lockout (UVLO)

Figure 8-12 shows the relationship of V_{CC} and I_{CC}.
After the IC starts operation, when the VCC pin voltage decreases to $\mathrm{V}_{\mathrm{CC}(\mathrm{OFF})}=8.8 \mathrm{~V}$, the IC stops switching operation by the Undervoltage Lockout (UVLO) Function and reverts to the state before startup again.

Figure 8-12 V_{CC} versus I_{CC}

8.4 Bias Assist Function

Figure 8-13 shows the VCC pin voltage behavior during the startup period.

Figure 8-13 VCC pin voltage during startup period

When the conditions of Section 8.2 are fulfilled, the IC starts operation. Thus, the circuit current, I_{CC}, increases, and the VCC pin voltage begins dropping. At the same time, the auxiliary winding voltage, V_{D}, increases in proportion to the output voltage rise. Thus, the VCC pin voltage is set by the balance between dropping due to the increase of I_{CC} and rising due to the increase of the auxiliary winding voltage, V_{D}.

When the VCC pin voltage decreases to $\mathrm{V}_{\mathrm{CC}(\mathrm{OFF})}=8.8 \mathrm{~V}$, the IC stops switching operation and a startup failure occurs.

In order to prevent this, when the VCC pin voltage decreases to the startup current threshold biasing voltage,
$\mathrm{V}_{\mathrm{CC}(\mathrm{BIAS})}=9.8 \mathrm{~V}$, the Bias Assist Function is activated.
While the Bias Assist Function is activated, any decrease of the VCC pin voltage is counteracted by providing the startup current, $\mathrm{I}_{\mathrm{CC}(\mathrm{ST})}$, from the startup circuit.

It is necessary to check the startup process based on actual operation in the application, and adjust the VCC pin voltage, so that the startup failure does not occur.

If VCC pin voltage decreases to $\mathrm{V}_{\mathrm{CC}(\mathrm{BIAS})}$ and the Bias Assist Function is activated, the power loss increases.

Thus, VCC pin voltage in normal operation should be set more than $\mathrm{V}_{\mathrm{CC}(\mathrm{BIAS})}$ by the following adjustments.

- The turns ratio of the auxiliary winding to the secondary-side winding is increased.
- The value of C 2 in Figure 8-11 is increased and/or the value of R1 is reduced.

During all protection operation, the Bias Assist Function is disabled.

8.5 Soft Start Function

Figure 8-14 shows the Soft-start operation waveforms.

Figure 8-14 Soft-start operation

The IC has Soft Start Function to reduce stress of peripheral component and prevent the capacitive mode operation.

During the soft start operation, C6 connected to the CSS pin is charged by the CSS Pin Charge Current, $\mathrm{I}_{\mathrm{CSS}(\mathrm{C})}=-105 \mu \mathrm{~A}$. The oscillation frequency is varied by the CSS pin voltage. The switching frequency gradually decreases from $\mathrm{f}_{(\mathrm{MAX}) \mathrm{ss}} *=400 \mathrm{kHz}$ at most, according to the CSS pin voltage rise. At same time, output power increases. When the output voltage increases, the IC is

[^0]operated with an oscillation frequency controlled by feedback.

When the IC becomes any of the following conditions, C6 is discharged by the CSS Pin Reset Current, $\mathrm{I}_{\mathrm{CSS}(\mathrm{R})}=1.8 \mathrm{~mA}$.

- The VCC pin voltage decreases to the operation stop voltage, $\mathrm{V}_{\mathrm{CC}(\mathrm{OFF})}=8.8 \mathrm{~V}$, or less.
- The VSEN pin voltage decreases to the off-threshold voltage, $\mathrm{V}_{\mathrm{SEN}(\mathrm{OFF})}=1.100 \mathrm{~V}$, or less.
- Any of protection operations in protection mode (OVP, OLP or TSD) is activated.

8.6 Minimum and Maximum Switching Frequency Setting

The minimum switching frequency is adjustable by the value of $\mathrm{R} 5\left(\mathrm{R}_{\mathrm{CSS}}\right)$ connected to the CSS pin. The relationship of $\mathrm{R} 5\left(\mathrm{R}_{\mathrm{CSS}}\right)$ and the externally adjusted minimum frequency, $\mathrm{f}_{\text {(MIN)ADJ }}$, is shown in Figure 8-15.
The $f_{\text {(MIN)ADJ }}$ should be adjusted to more than the resonant frequency, f_{O}, under the condition of the minimum mains input voltage and the maximum output power.
The maximum switching frequency, $\mathrm{f}_{\text {MAX }}$, is determined by the inductance and the capacitance of the resonant circuit. The $\mathrm{f}_{\text {MAX }}$ should be adjusted to less than the maximum frequency, $\mathrm{f}_{(\mathrm{MAX})}=300 \mathrm{kHz}$.

Figure 8-15 $\mathrm{R} 5\left(\mathrm{R}_{\mathrm{CSS}}\right)$ versus $\mathrm{f}_{\text {(MIN)ADJ }}$

8.7 High-side Driver

Figure 8-16 shows a bootstrap circuit. The bootstrap circuit is for driving to $\mathrm{Q}_{(\mathrm{H})}$ and is made by D3, R12 and C 12 between the REG pin and the VS pin.
When $\mathrm{Q}_{(\mathrm{H})}$ is OFF state and $\mathrm{Q}_{(\mathrm{L})}$ is ON state, the VS pin voltage becomes about ground level and C12 is charged from the REG pin.
When the voltage of between the VB pin and the VS pin, $\mathrm{V}_{\mathrm{B}-\mathrm{S}}$, increases to $\mathrm{V}_{\mathrm{BUV}(\mathrm{ON})}=6.8 \mathrm{~V}$ or more, an internal high-side drive circuit starts operation. When
$\mathrm{V}_{\text {B-S }}$ decreases to $\mathrm{V}_{\text {BUV (OFF) }}=6.4 \mathrm{~V}$ or less, its drive circuit stops operation. In case the both ends of C 12 and D 4 are short, the IC is protected by $\mathrm{V}_{\mathrm{BUV} \text { (OFF). }}$ D4 for protection against negative voltage of the VS pin

- D3

D3 should be an ultrafast recovery diode of short recovery time and low reverse current. As for Sanken's diode lineup, AG01A ($\mathrm{V}_{\mathrm{RM}}=600 \mathrm{~V}$) of UFRD series is recommended for the specification that the maximum mains input voltage is 265 VAC .

- C11, C12, and R12

The values of C11, C12, and R12 are determined by total gate charge, Qg , of external MOSFET and voltage dip amount between the VB pin and the VS pin in the burst mode of the standby mode change.
C11, C12, and R12 should be adjusted so that the voltage between the VB pin and the VS is more than $\mathrm{V}_{\mathrm{BUV}(\mathrm{ON})}=6.8 \mathrm{~V}$ by measuring the voltage with a high-voltage differential probe.
The reference value of C 11 is $0.47 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$.
The time constant of C12 and R12 should be less than 500 ns . The values of C 12 and R 22 are $0.047 \mu \mathrm{~F}$ to 0.1 $\mu \mathrm{F}$, and 2.2Ω to 10Ω.
C11 and C12 should be a film type or ceramic capacitor of low ESR and low leakage current.

- D4

D4 should be a Schottky diode of low forward voltage, V_{F}, so that the voltage between the VB pin and the VS pin must not decrease to the absolute maximum ratings of -0.3 V or less.

Figure 8-16 Bootstrap circuit

8.8 Constant Voltage Control Operation

Figure $8-17$ shows the FB pin peripheral circuit. The FB pin is sunk the feedback current by the photo-coupler, PC1, connected to FB pin. As a result, since the
oscillation frequency is controlled by the FB pin, the output voltage is controlled to constant voltage (in inductance area).
The feedback current increases under slight load condition, and thus the FB pin voltage decreases. While the FB pin voltage decreases to the oscillation stop threshold voltage, $\mathrm{V}_{\mathrm{FB}(\mathrm{OFF})}=0.20 \mathrm{~V}$, or less, the IC stops switching operation. This operation reduces switching loss, and prevents the increasing of the secondary output voltage. In Figure 8-17, R8 and C9 are for phase compensation adjustment, and C 5 is for high frequency noise rejection.
The secondary-side circuit should be designed so that the collector current of PC 1 is more than $195 \mu \mathrm{~A}$ which is the absolute value of the maximum source current, $\mathrm{I}_{\mathrm{FB}(\mathrm{MAX})}$. Especially the current transfer ratio, CTR, of the photo coupler should be taken aging degradation into consideration.

Figure 8-17 FB pin peripheral circuit

8.9 Standby Function

The IC has the Standby Function in order to increase circuit efficiency in light load. When the Standby Function is activated, the IC operates in the burst oscillation mode as shown in Figure 8-18.

Figure 8-18 Standby waveform

The burst oscillation has periodic non-switching intervals. Thus, the burst mode reduces switching losses. Generally, to improve efficiency under light load conditions, the frequency of the burst mode becomes just a few kilohertz. In addition, the IC has the Soft-on and the Soft-off Function in order to suppress rapid and sharp fluctuation of the drain current during the burst
mode. thus, the audible noises can be reduced (refer to Section 8.9.3).

The IC has the Auto Standby Function. Auto Standby Function automatically changes to the standby operation at light load. The standby point is selectable according to the value of $\mathrm{R}_{\text {ADJ }}$ connected to ADJ pin. (refer to Section 8.9.1). In addition, the operation of the IC changes to the standby operation by the external signal (refer to Section 8.9.2).

8.9.1 Auto Standby Function

Figure 8-19 shows the auto standby circuit, Figure $8-20$ shows the waveform of auto standby operation

When output power decreases, the voltage of CL pin and FB pin decreases. When CL pin voltage reaches to Standby Threshold Voltage, C10 connected to SB pin is discharged by Sink Current $\mathrm{I}_{\mathrm{SB}(\mathrm{SNK})}=10 \mu \mathrm{~A}$ and the SB pin voltage decreases. When SB pin voltage reaches to Oscillation Stop Threshold Voltage $\mathrm{V}_{\mathrm{SB}(\mathrm{OFF})}=0.5 \mathrm{~V}$, the operation of the IC changes to the standby operation.

When SB pin voltage is $\mathrm{V}_{\mathrm{SB}(\mathrm{OFF})}=0.5 \mathrm{~V}$ or less and FB pin voltage is $\mathrm{V}_{\mathrm{FB}(\mathrm{OFF})}=0.20 \mathrm{~V}$, the IC stops switching operation. When the output power increases and the SB pin voltage increases to Standby Threshold Voltage $\mathrm{V}_{\mathrm{SB}(\mathrm{STB})}=5.0 \mathrm{~V}$ or more, the IC returns to normal operation.

The standby point is selectable according to the ADJ pin voltage changed by $\mathrm{R}_{\text {ADJ }}$. The ADJ pin has threshold voltage as shown in Table 8-1. The CL Pin Standby Threshold Voltage, $\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$, is selected to one of four threshold voltages by ADJ pin voltage and ADJ pin threshold voltage. $\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$ depends on $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ (refer to Section 8.17 Overload Protection) and VSEN pin voltage. The ratio of $\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$ to $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ is as shown in Table 8-2. The relationship of $\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$ to VSEN pin voltage is as shown in Figure 8-21

The value of $\mathrm{R}_{\text {ADJ }}$ is calculated as follows:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ADJ}}=\frac{\mathrm{V}_{\mathrm{ADJ}}}{\left|\mathrm{I}_{\mathrm{ADJ}}\right|} \tag{9}
\end{equation*}
$$

where,
$\mathrm{V}_{\text {ADJ }}$ is the ADJ pin setting voltage (see Table 8-2), $\mathrm{I}_{\mathrm{ADJ}}$ is the ADJ Pin Source Current $-10.2 \mu \mathrm{~A}$

Figure 8-20 Auto standby waveform

Table 8-1 ADJ pin threshold voltage

Characteristic	Symbol	Threshold voltage (Typ.)
ADJ Pin Threshold Voltage (1)	$\mathrm{V}_{\text {ADJ1 }}$	1.00 V
ADJ Pin Threshold Voltage (2)	$\mathrm{V}_{\text {ADJ2 }}$	2.00 V
ADJ Pin Threshold Voltage (3)	$\mathrm{V}_{\text {ADJ3 }}$	3.00 V

Table 8-2 Stand by threshold voltage, $\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$

$$
\left(\mathrm{V}_{\mathrm{SEN}}=1.5 \mathrm{~V}\right)
$$

State	ADJ pin voltage	$\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$	$\mathrm{V}_{\mathrm{CL}(\mathrm{STB})}$ $/ \mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$
ADJ1	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ADJ}}<1.00 \mathrm{~V}$	0.30 V	7.5%
ADJ2	$1.00 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ADJ}}<2.00 \mathrm{~V}$	0.57 V	15.0%
ADJ3	$2.00 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ADJ}}<3.00 \mathrm{~V}$	0.86 V	22.5%
ADJ4	$3.00 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ADJ}}$	1.21 V	30.0%

Figure 8-21 Relationship of $\mathrm{V}_{\mathrm{CL}(\text { STB })}$
to VSEN pin voltage

Figure 8-19 Auto standby circuit

8.9.2 Standby Mode Changed by External Signal

Figure 8-22 shows the standby mode change circuit with external signal. Figure $8-20$ shows the standby change operation waveforms.

When the standby terminal of Figure 8-22 is provided with the L signal, Q1 turns off, C10 connected to the SB pin is discharged by the sink current, $\mathrm{I}_{\mathrm{SB}(\mathrm{SNK})}=10 \mu \mathrm{~A}$, and the SB pin voltage decreases. When the SB pin voltage decrease to the SB Pin Oscillation Stop Threshold Voltage, $\mathrm{V}_{\mathrm{SB}(\mathrm{OFF})}=0.5 \mathrm{~V}$, the operation of the IC is changed to the standby mode. When SB pin voltage is $\mathrm{V}_{\mathrm{SB}(\mathrm{OFF})}=0.5 \mathrm{~V}$ or less and FB pin voltage is Oscillation Stop Threshold Voltage $\mathrm{V}_{\mathrm{FB}(\mathrm{OFF})}=0.20 \mathrm{~V}$ or less, the IC stops switching operation. When the standby terminal is provided with the H signal and the SB pin voltage increases to Standby Threshold Voltage $\mathrm{V}_{\mathrm{SB}(\mathrm{STB})}=5.0 \mathrm{~V}$ or more, the IC returns to normal operation.

Figure 8-22 Standby mode change circuit

Figure 8-23 Standby change operation waveforms

8.9.3 Burst Oscillation Operation

In standby operation, the IC operates burst oscillation where the peak drain current is suppressed by Soft-On /Soft-off Function in order to reduce audible noise from transformer. During burst oscillation operation, the switching oscillation is controlled by SB pin voltage.
Figure 8-24 shows the burst oscillation operation waveforms.

Figure 8-24 Burst oscillation operation waveforms

When the SB pin voltage decreases to $\mathrm{V}_{\mathrm{SB}(\mathrm{OFF})}=0.5 \mathrm{~V}$ or less and the FB pin voltage decreases to $\mathrm{V}_{\mathrm{FB}(\mathrm{OFF})}=0.20 \mathrm{~V}$ or less, the IC stops switching operation and the output voltage decreases.

Since the output voltage decreases, the FB pin voltage increases. When the FB pin voltage increases to the oscillation start threshold voltage, $\mathrm{V}_{\mathrm{FB}(\mathrm{ON})}=0.30 \mathrm{~V}, \mathrm{C} 10$ is charged by $\mathrm{I}_{\mathrm{SB}(\mathrm{SRC})}=-10 \mu \mathrm{~A}$, and the SB pin voltage gradually increases.

When the SB pin voltage increases to the oscillation start threshold voltage, $\mathrm{V}_{\mathrm{SB}(\mathrm{ON})}=0.6 \mathrm{~V}$, the IC resumes switching operation, controlling the frequency control by the SB pin voltage. Thus, the output voltage increases (Soft-on). After that, when FB pin voltage decrease to oscillation stop threshold voltage, $\mathrm{V}_{\mathrm{FB}(\mathrm{OFF})}=0.20 \mathrm{~V}, \mathrm{C} 10$ is discharged by $\mathrm{I}_{\mathrm{SB}(\mathrm{SNK})}=10 \mu \mathrm{~A}$ and SB pin voltage decreases. When the SB pin voltage decreases to $\mathrm{V}_{\mathrm{SB}(\text { OFF })}$ again, the IC stops switching operation. Thus, the output voltage decreases (Soft-off).
The SB pin discharge time in the Soft-on and Soft-off Function depends on C10. When the value of C10 increases, the Soft-On/Soft-off Function makes the peak drain current suppressed, and makes the burst period longer. Thus, the output ripple voltage may increase and/or the VCC pin voltage may decrease.

If the VCC pin voltage decreases to $\mathrm{V}_{\mathrm{CC}(\mathrm{BIAS})}=9.8 \mathrm{~V}$, the Bias Assist Function is always activated, and it results in the increase of power loss (refer to Section 8.4). Thus, it is necessary to adjust the value of C10 while checking the input power, the output ripple voltage, and the VCC pin voltage. The reference value of C 10 is about $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.

8.10 Automatic Dead Time Adjustment Function

The dead time is the period when both the high-side and the low-side power MOSFETs are off.

As shown in Figure 8-25, if the dead time is shorter than the voltage resonant period, the power MOSFET is turned on and off during the voltage resonant operation. In this case, the power MOSFET turned on and off in hard switching operation, and the switching loss increases. The Automatic Dead Time Adjustment Function is the function that the ZVS (Zero Voltage Switching) operation of $\mathrm{Q}_{(\mathrm{H})}$ and $\mathrm{Q}_{(\mathrm{L})}$ is controlled automatically by the voltage resonant period detection of IC. The voltage resonant period is varied by the power supply specifications (input voltage and output power, etc.). However, the power supply with this function is unnecessary to adjust the dead time for each power supply specification.

Figure 8-25 ZVS failure operation waveform

As shown in Figure 8-26, the VS pin detects the dv/dt period of rising and falling of the voltage between drain and source of the low-side power MOSFET, $\mathrm{V}_{\mathrm{DS}(\mathrm{L})}$, and the IC sets its dead time to that period. This function controls so that the high-side and the low-side power MOSFETs are automatically switched to Zero Voltage Switching (ZVS) operation. This function operates in the period from $\mathrm{t}_{\mathrm{d}(\mathrm{MIN})}=0.35 \mu \mathrm{~s}$ to $\mathrm{t}_{\mathrm{d}(\mathrm{MAX})}=1.65 \mu \mathrm{~s}$.

In minimum output power at maximum input voltage and maximum output power at minimum input voltage, the ZCS (Zero Current Switching) operation of IC (the drain current flows through the body diode is about $1 \mu \mathrm{~s}$ as shown in Figure 8-27), should be checked based on actual operation in the application.

Figure 8-26 VS pin and dead time period

Figure 8-27 ZCS check point

8.11 Brown-In and Brown-Out Function

Figure 8-28 shows the VSEN pin peripheral circuit. This function detects the mains input voltage, and stops switching operation during low mains input voltage, to prevent exceeding input current and overheating.
R2 to R4 set the detection voltage of this function. When the VCC pin voltage is higher than $\mathrm{V}_{\mathrm{CC}(\mathrm{ON})}$, this function operates depending on the VSEN pin voltage as follows:

- When the VSEN pin voltage is more than $\mathrm{V}_{\text {SEN }}$ ${ }_{(\mathrm{ON})}=1.300 \mathrm{~V}$, the IC starts.
- When the VSEN pin voltage is less than $\mathrm{V}_{\text {SEN }}$ $($ OFF $)=1.100 \mathrm{~V}$, the IC stops switching operation.

Figure 8-28 VSEN pin peripheral circuit

Given, the DC input voltage when the IC starts as $\mathrm{V}_{\text {IN }(\mathrm{ON})}$, the DC input voltage when the switching operation of the IC stops as $\mathrm{V}_{\mathrm{IN}(\mathrm{OFF})} . \mathrm{V}_{\mathrm{IN}(\mathrm{ON})}$ is calculated by Equation (10). $\mathrm{V}_{\mathrm{IN}(\mathrm{OFF})}$ is calculated by Equation (11). Thus, the relationship between $\mathrm{V}_{\mathrm{IN}(\mathrm{ON})}$ and $\mathrm{V}_{\mathrm{IN}(\mathrm{OFF})}$ is Equation (12).

$$
\begin{align*}
& \mathrm{V}_{\mathrm{IN}(\mathrm{ON})} \approx \mathrm{V}_{\mathrm{SEN}(\mathrm{ON})} \times \frac{\mathrm{R} 2+\mathrm{R} 3+\mathrm{R} 4}{\mathrm{R} 4} \tag{10}\\
& \mathrm{~V}_{\mathrm{IN}(\mathrm{OFF})} \approx \mathrm{V}_{\mathrm{SEN}(\mathrm{OFF})} \times \frac{\mathrm{R} 2+\mathrm{R} 3+\mathrm{R} 4}{\mathrm{R} 4} \tag{11}\\
& \mathrm{~V}_{\mathrm{IN}(\mathrm{OFF})} \approx \frac{\mathrm{V}_{\mathrm{SEN}(\mathrm{OFF})}}{\mathrm{V}_{\mathrm{SEN}(\mathrm{ON})}} \times \mathrm{V}_{\mathrm{IN}(\mathrm{ON})} \tag{12}
\end{align*}
$$

The detection resistance is calculated from Equation (10) as follows:

$$
\begin{equation*}
\mathrm{R} 2+\mathrm{R} 3 \approx \frac{\mathrm{~V}_{\mathrm{IN}(\mathrm{ON})}-\mathrm{V}_{\mathrm{SEN}(\mathrm{ON})}}{\mathrm{V}_{\mathrm{SEN}(\mathrm{ON})}} \times \mathrm{R} 4 \tag{13}
\end{equation*}
$$

Because R2 and R3 are applied high DC voltage and are high resistance, the following should be considered:

- Select a resistor designed against electromigration according to the requirement of the application, or
- Use a combination of resistors in series for that to reduce each applied voltage

The reference value of R 2 is about $10 \mathrm{M} \Omega$.
C4 shown in Figure 8-28 is for reducing ripple voltage of detection voltage and making delay time. The value is $0.1 \mu \mathrm{~F}$ or more, and the reference value is about $0.47 \mu \mathrm{~F}$.

The value of R2, R3 and R4 and C4 should be selected based on actual operation in the application.

8.12 Capacitive Mode Detection Function

The resonant power supply is operated in the inductance area shown in Figure 8-29. In the capacitance area, the power supply becomes the capacitive mode operation (refer to Section 8.1). In order to prevent the operation, the minimum oscillation frequency is needed to be set higher than f_{0} on each power supply specification.

However, the IC has the capacitive mode operation Detection Function kept the frequency higher than f_{0}. Thus, the minimum oscillation frequency setting is unnecessary and the power supply design is easier. In addition, the ability of transformer is improved because the operating frequency can operate close to the resonant frequency, f_{0}.

Figure 8-29 Operating area of resonant power supply

The resonant current is detected by the RC pin, and the IC prevents the capacitive mode operation.

When the capacitive mode is detected, the C7 connected to CL pin is charged by $\mathrm{I}_{\mathrm{CL}(\mathrm{SRC})}=-17 \mu \mathrm{~A}$. When the CL pin voltage increases to $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$, the OLP is activated and the switching operation stops. During the OLP operation, the intermittent operation by UVLO is repeated (refer to Section 8.17).

The detection voltage is changed to $\mathrm{V}_{\mathrm{RC} 1}= \pm 0.10 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{RC} 2}= \pm 0.50 \mathrm{~V}$ depending on the load as shown in Figure 8-31 and Figure 8-32. The Capacitive Mode Operation Detection Function operations as follows:

- Period in which the $\mathbf{Q}_{(H)}$ is $\mathbf{O N}$

Figure 8-30 shows the RC pin waveform in the inductance area, and Figure 8-31 and Figure 8-32 shows the RC pin waveform in the capacitance area.
In the inductance area, the RC pin voltage doesn't cross the plus side detection voltage in the downward direction during the on period of $\mathrm{Q}_{(\mathrm{H})}$ as shown in Figure 8-30.
On the contrary, in the capacitance area, the RC pin voltage crosses the plus side detection voltage in the downward direction. At this point, the capacitive mode operation is detected. Thus, $\mathrm{Q}_{(\mathrm{H})}$ is turned off, and $\mathrm{Q}_{(\mathrm{L})}$ is turned on, as shown in Figure 8-31 and Figure 8-32.

- Period in which the $Q_{(L)}$ is on

Contrary to the above of $\mathrm{Q}_{(\mathrm{H})}$, in the capacitance area, the RC pin voltage crosses the minus side detection voltage in the upward directiont during the on period of $\mathrm{Q}_{(\mathrm{L})}$ At this point, the capacitive mode operation is detected. Thus, $\mathrm{Q}_{(\mathrm{L})}$ is turned off and $\mathrm{Q}_{(\mathrm{H})}$ is turned on.

As above, since the capacitive mode operation is detected by pulse-by-pulse and the operating frequency is synchronized with the frequency of the capacitive
mode operation, and the capacitive mode operation is prevented. In addition to the adjusting method of $\mathrm{R}_{\mathrm{OCP}}$, C3, and R6 in Section 8.16, $\mathrm{R}_{\mathrm{OCP}}, \mathrm{C} 3$, and R6 should be adjusted so that the absolute value of the RC pin voltage increases to more than $\left|\mathrm{V}_{\mathrm{RC} 2}\right|=0.50 \mathrm{~V}$ under the condition caused the capacitive mode operation easily, such as startup, turning off the mains input voltage, or output shorted. The RC pin voltage must be within the absolute maximum ratings of -6 to 6 V

Figure 8-30 RC pin voltage in inductance area

Figure 8-31 High side capacitive mode detection in light load

Figure 8-32 High side capacitive mode detection in heavy load

8.13 Input Electrolytic Capacitor Discharge Function

Figure 8-33 shows an application that residual voltage of the input capacitor, C 1 , is reduced after turning off the mains input voltage. R2 is connected to the AC input lines through D7 and D8. Just after turning off the mains input voltage, the VSEN pin voltage decreases to $\mathrm{V}_{\text {SEN (OFF) }}=1.100 \mathrm{~V}$ according to a short time of the time constant with R2 to R4 and C4, and C1 is discharged by
the equivalent to $\mathrm{I}_{\mathrm{CC}(\mathrm{ST})}=6.0 \mathrm{~mA}$.

Figure 8-33 Input capacitor discharge

8.14 Reset Detection Function

The magnetizing current means the circulating current applied for resonant operation, and that flows only into the primary-side circuit. During the startup period when the feedback control for the output voltage is inactive, if the magnetizing current cannot be reset in the on-period because of unbalanced operation, negative current may flows just before a power MOSFET turns off, and hard switching may occur, and stresses of power MOSFET may increase. To prevent this hard switching, the IC incorporates the Reset Detection Function.

Figure 8-35 shows the high-side operation and drain current waveform examples in normal resonant operation and reset failure operation. The Reset Detection Function extends the on-period until the absolute value of RC pin voltage, $\left|\mathrm{V}_{\mathrm{RC}}\right|$, increases to 0.10 V or more. Thus, this function prevents the hard switching operation. When the on-period reaches the maximum reset time, $\mathrm{t}_{\mathrm{RST}(\mathrm{MAX})}=15 \mu \mathrm{~s}$, the on-period expires at that moment, and the power MOSFET turns off (refer to Figure 8-34).

Figure 8-34 Reset detection operation example at high-side on-period

O Normal resonant operation

(A) Point D

Point A

$\underset{V_{\text {DS(H) }}}{\text { Point }}=0 \mathrm{~V}$

Point C

Turning on at $\mathrm{V}_{\mathrm{DS}(\mathrm{L})}=0 \mathrm{~V}$ results in soft-switching

Point E $E=0 \mathrm{~V}$

Turning on at $\mathrm{V}_{\mathrm{DS}(\mathrm{L})} \gg 0 \mathrm{~V}$ results in hard-switching

Figure 8-35 High-side operation and drain current waveform examples in normal resonant operation and in reset failure operation

8.15 Overvoltage Protection (OVP)

When the voltage between the VCC pin and the GND pin is applied to the OVP threshold voltage, $\mathrm{V}_{\mathrm{CC}(\mathrm{OVP})}=32.0 \mathrm{~V}$, or more, the Overvoltage Protection (OVP) is activated, and the IC stops switching operation in protection mode. After stopping, the VCC pin voltage decreases to $\mathrm{V}_{\mathrm{CC}(\text { OFF })}=8.8 \mathrm{~V}$, the Undervoltage Lockout (UVLO) Function is activated, and the IC reverts to the state before startup again.

After that, the startup circuit is activated, the VCC pin voltage increases to $\mathrm{V}_{\mathrm{CC}(\mathrm{ON})}=14.0 \mathrm{~V}$, and the IC restarts. During the protection mode, restart and stop are repeated. When the fault condition is removed, the IC returns to normal operation automatically. When the auxiliary winding supplies the VCC pin voltage, the OVP is able to detect an excessive output voltage, such as when the detection circuit for output control is open in the secondary-side circuit because the VCC pin voltage is proportional to the output voltage.

The output voltage of the secondary-side circuit at OVP operation, $\mathrm{V}_{\text {OUT(OVP) }}$, is approximately given as below:

$$
\begin{equation*}
\mathrm{V}_{\text {OUT(OVP) }}=\frac{\mathrm{V}_{\text {OUT(NORMAL) }}}{\mathrm{V}_{\text {CC(NORMAL) }}} \times 32(\mathrm{~V}) \tag{14}
\end{equation*}
$$

where,
$\mathrm{V}_{\text {OUt(NORMAL) }}$: Output voltage in normal operation
$\mathrm{V}_{\mathrm{CC}(\text { NORMAL })}$: VCC pin voltage in normal operation

8.16 Overcurrent Protection (OCP)

The Overcurrent Protection (OCP) detects the drain current, I_{D}, on pulse-by-pulse basis, and limits output power. In Figure 8-36, this circuit enables the value of C3 for shunt capacitor to be smaller than the value of Ci for current resonant capacitor, and the detection current through C3 is small. Thus, the loss of the detection resistor, $\mathrm{R}_{\mathrm{OCP}}$, is reduced, and $\mathrm{R}_{\mathrm{OCP}}$ is a small-sized one available. There is no convenient method to calculate the accurate resonant current value according to the mains input and output conditions, and others. Thus, $\mathrm{R}_{\mathrm{OCP}}, \mathrm{C} 3$, and C6 should be adjusted based on actual operation in the application. The following is a reference adjusting method of $\mathrm{R}_{\mathrm{OCP}}, \mathrm{C} 3, \mathrm{R} 6$, and C8:

- C3 and R $\mathrm{R}_{\mathrm{OCP}}$

C 3 is 100 pF to 330 pF (around 1% of Ci value). $\mathrm{R}_{\mathrm{OCP}}$ is around 100Ω.
Given the current of the high side power MOSFET at ON state as $\mathrm{I}_{\mathrm{D}(\mathrm{H})} . \mathrm{R}_{\mathrm{OCP}}$ is calculated Equation (15).
The detection voltage of $R_{\text {OCP }}$ is used the detection of the capacitive mode operation (refer to Section 8.12). Therefore, setting of $\mathrm{R}_{\mathrm{OCP}}$ and C3 should be taken account of both OCP and the capacitive mode operation.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{OCP}} \approx \frac{\mathrm{~V}_{\mathrm{OC}(\mathrm{~L})}}{\mathrm{I}_{\mathrm{D}(\mathrm{H})}} \times\left(\frac{\mathrm{C} 3+\mathrm{Ci}}{\mathrm{C} 3}\right) \tag{15}
\end{equation*}
$$

- R6 and C8 are for high frequency noise reduction. R6 is 100Ω to 470Ω. C6 is 100 pF to 1000 pF .

The OCP operation has two-step threshold voltage as follows:

Step I, RC pin threshold voltage (Low), $\mathbf{V}_{\mathbf{R C}(\mathrm{L})}$:

This step is active first. When the absolute value of the RC pin voltage increases to more than $\left|\mathrm{V}_{\mathrm{OC}(\mathrm{L})}\right|=1.50$ V, C6 connected to the CSS pin is discharged by $\mathrm{I}_{\mathrm{CSS}(\mathrm{L})}=1.8 \mathrm{~mA}$. Thus, the switching frequency increases, and the output power is limited. During discharging C6, when the absolute value of the RC pin voltage decreases to $\left|\mathrm{V}_{\mathrm{RC}(\mathrm{L})}\right|$ or less, the discharge stops.

Step II, RC pin threshold voltage (High-speed),

 $\mathrm{V}_{\mathrm{RC}(\mathrm{S})}$:This step is active second. When the absolute value of the RC pin voltage increases to more than $\left|\mathrm{V}_{\mathrm{RC}(\mathrm{S})}\right|=2.30$ V , the high-speed OCP is activated, and power MOSFETs reverse on and off. At the same time, C6 is discharged by $\mathrm{I}_{\mathrm{CSS}(\mathrm{S})}=20.5 \mathrm{~mA}$. Thus, the switching frequency quickly increases, and the output power is quickly limited. This step operates as protections for exceeding overcurrent, such as the output shorted. When the absolute value of the RC pin voltage decreases to $\left|\mathrm{V}_{\mathrm{RC}(\mathrm{S})}\right|$ or less, the operation is changed to the above Step I.

When OLP Input Voltage Compensation is used, CL pin voltage is needed to reach the threshold voltage of Overload Protection (OLP), $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$, in the state that RC pin voltage is less than $\mathrm{V}_{\mathrm{RC}(\mathrm{L})}$. Therefore, when output power increases, the OLP is activated (refer to Section 8.17). When the input voltage is constant like PFC output, OLP Input Voltage Compensation is unnecessary. Therefore, when output power increases, the above OCP operation (Step I and Step II) is activated.

Figure 8-36 RC pin peripheral circuit

8.17 Overload Protection (OLP) with Input Voltage Compensation

8.17.1 Overload Protection (OLP)

Figure 8-37 shows the Overload Protection (OLP) waveforms in the case without OLP Input Voltage Compensation Function.

When CL pin voltage becomes the threshold voltage of OLP, $\mathrm{V}_{\text {CL(olp) }}$, the OLP is activated and the switching operation stops. During the OLP operation, the intermittent operation by UVLO is repeated (refer to Section 8.15).

When the fault condition is removed, the IC returns to normal operation automatically.
$\mathrm{V}_{\mathrm{CL}(o L P)}$ is depended on the input voltage by OLP Input Voltage Compensation Function as shown in Section 8.17.2.

Figure 8-37 OLP waveform without OLP Input Voltage Compensation Function

The trigger of OLP is different according to the case with OLP Input Voltage Compensation Function or without it.

- Without OLP Input Voltage Compensation Function

Figure 8-38 shows the OLP operation waveforms. When the absolute value of RC pin voltage increases to $\left|\mathrm{V}_{\mathrm{RC}(\mathrm{L})}\right|=1.50 \mathrm{~V}$ by increasing of output power, the Overcurrent Protection (OCP) is activated. After that, the C7 connected to CL pin is charged by $\mathrm{I}_{\mathrm{CL}(\mathrm{SRC})}=-17 \mu \mathrm{~A}$. When the OCP state continues and CL pin voltage increases to $\mathrm{V}_{\mathrm{CL}(\text { OLP })}$, the OLP is activated.

Figure 8-38 OLP operation waveform without OLP Input Voltage Compensation Function

- With OLP Input Voltage Compensation Function

CL pin voltage is needed to reach $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ in the state that $R C$ pin voltage is less than $V_{R C(L)}$.
When CL pin voltage reaches $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ in one of the following condition, the OLP is activated as shown in Figure 8-39.

1) The output power increases, CL pin voltage increases to $\mathrm{V}_{\text {CL(OLP) }}$ which is constant.
2) The input voltage increases, $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ depending on OLP Input Voltage Compensation decreases to CL pin voltage.

Figure 8-39 OLP operation waveform with OLP Input Voltage Compensation Function

8.17.2 OLP Input Voltage Compensation Function

In the case without OLP Input Voltage Compensation Function, when the absolute value of RC pin voltage increases to $\left|\mathrm{V}_{\mathrm{RC}(\mathrm{L})}\right|=1.50 \mathrm{~V}$, the capacitor connected to CS pin is charged. When CS pin voltage increases to $\mathrm{V}_{\mathrm{CL}(O L P)}$, the OLP is activated (refer to Figure 8-38).

In the constant voltage control of current resonant topology, when the input voltage increases, the resonant frequency increases, and the peak drain current decreases. Since $\left|V_{\mathrm{RC}(\mathrm{L})}\right|$ is a fixed value, when output power increases at the constant rate, there are the output power difference at OLP operation in high and low input voltages as shown in Figure 8-40.In the universal mains input voltage, the output power at OLP operation is very large in the maximum input voltage, and component stresses are increased by heating.

Therefore, the IC has OLP Input Voltage Compensation Function that the output power difference at OLP operation is limited in input voltages, and can realize power supply of universal mains input voltage (85 VAC to 265 VAC).

As shown in Figure 8-41, this function compensates the OLP threshold voltage, $\mathrm{V}_{\mathrm{CL}(O L P)}$, depending on input voltage, and is used so that CL pin voltage reaches $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ in the state that RC pin voltage is less than $\mathrm{V}_{\mathrm{RC}(\mathrm{L})}$.

Figure 8-40 OLP operation waveforms according to input voltage (without OLP Input Voltage Compensation)

Figure 8-41 OLP operation waveforms according to input voltage (with OLP Input Voltage Compensation)

- PL Pin and CL Pin Setup:

The primary-side winding current as shown in Figure 8-42 includes the magnetizing current not transferred to the secondary-side circuit, and the load current proportional to the output current.
The current separated from the primary-side winding current by C3 flows to the PL pin. As shown in Figure 8-43, the primary-side winding current flows to the C 7 connected to CL pin during the high side power MOSFET turning on. The magnetizing current becomes zero by charging and discharging. Only the load current is charged to C7. As a result, the CL pin voltage is proportional to the output current.
On actual operation of the application, C 7 connected to the CL pin should be adjusted so that ripple voltage of the CL pin reduces. R7 connected to the PL pin should be adjusted so that the OLP at the minimum mains input voltage is activated before the OCP limited by the low threshold voltage of OCP, $\mathrm{V}_{\mathrm{RC}(\mathrm{L})}$.
The PL pin voltage and the CL pin voltage must be within the absolute maximum ratings of -0.3 to 6 V , by adjusting R7, in the OCP operation point at the minimum mains input voltage.

- VSEN Pin Setup:

The VSEN pin detects the mains input voltage.
Both $\mathrm{V}_{\text {SEN }}$ and the setting voltage in Section 8.11
Brown-In and Brown-Out Function are determined by R2, R3, and R4. Both of them should be adjusted based on actual operation in the application.

Figure 8-42 the peripheral circuit of VSEN, PL, CL pin

Figure 8-43 The waveforms of CL pin

- Relationship Between $\mathbf{V}_{\text {CL(OLP) }}$ and $\mathbf{V}_{\text {SEN }}$:
$\mathrm{V}_{\mathrm{CL}(\text { OLP })}$ is OLP threshold voltage of CL pin. $\mathrm{V}_{\text {SEN }}$ is VSEN pin voltage. There are relationship between $\mathrm{V}_{\mathrm{CL}(\mathrm{OLP})}$ and $\mathrm{V}_{\text {SEN }}$ as shown in Figure 8-44.

Figure 8-44 VSEN pin voltage versus typical OLP threshold voltage, $\mathrm{V}_{\mathrm{CL}(\text { OLP })}$

- Without OLP Input Voltage Compensation Function:
Figure 8-45 shows the circuit that OLP Input Voltage

Compensation Function is canceled. The resistance of between PL pin and GND pin is about $100 \mathrm{k} \Omega$.

Figure 8-45 The IC peripheral circuit without OLP Input Voltage Compensation Function

8.18 Thermal Shutdown (TSD)

When the junction temperature of the IC reach to the Thermal Shutdown Temperature $\mathrm{T}_{\mathrm{j}(\mathrm{TSD})}=140{ }^{\circ} \mathrm{C}$ (min.), Thermal Shutdown (TSD) is activated and the IC stops switching operation. When the VCC pin voltage is decreased to $\mathrm{V}_{\mathrm{CC}(\mathrm{P} . \mathrm{OFF})}=8.8 \mathrm{~V}$ or less and the junction temperature of the IC is decreased to less than $\mathrm{T}_{\mathrm{j}(\mathrm{TSD})}$, the IC restarts.

During the protection mode, restart and stop are repeated. When the fault condition is removed, the IC returns to normal operation automatically.

9. Design Notes

9.1 External Components

Take care to use the proper rating and proper type of components.

9.1.1 Input and Output Electrolytic Capacitors

Apply proper derating to ripple current, voltage, and temperature rise. The electrolytic capacitor of high ripple current and low impedance types, designed for switch mode power supplies, is recommended to use.

9.1.2 Resonant Transformer

The resonant power supply uses the leakage inductance of transformer. Therefore, in order to reduce the effect of the eddy current and the skin effect, the wire of transformer should be used a bundle of fine litz wires.

9.1.3 Current Detection Resistor, $\mathbf{R}_{\text {OcP }}$

Choose a type of low internal inductance because a high frequency switching current flows to $\mathrm{R}_{\mathrm{OCP}}$, and of properly allowable dissipation.

9.1.4 Current Resonant Capacitor, $\mathbf{C i}$

Large resonant current flows through $\mathrm{Ci} . \mathrm{Ci}$ should use the polypropylene film capacitor with low loss and high current capability. In addition, Ci must be considered its frequency characteristic since high frequency current flows.

9.1.5 Gate Pin Peripheral Circuit

The VGH pin and the VGL pin are gate drive output pins for external power MOSFETs.

The peak source current of both of them is -540 mA , and the peak sink current is 1.50 A .
D_{S} of Figure 9-1 makes a turn-off speed faster.
R_{A}, R_{B} and $D s$ should be adjusted considering power losses of power MOSFETs, gate waveforms (reduction of ringing caused by pattern layout and others), and EMI noise.
R_{A} is about 33Ω to $330 \Omega . \mathrm{R}_{\mathrm{B}}$ is about $10 \Omega . \mathrm{R}_{\mathrm{GS}}$ prevents malfunctions caused by steep $\mathrm{dv} / \mathrm{dt}$ at turning off power MOSFET. R_{GS} is recommended to be a resistor of 10 k to $100 \mathrm{k} \Omega$ close to the Gate and the Source of power MOSFET.

When the gate resistances are adjusted, the gate waveforms should be checked that the dead time is ensured as shown in Figure 9-2.

Figure 9-1 Power MOSFET peripheral circuit

Figure 9-2 Dead time confirmation

9.2 PCB Trace Layout and Component Placement

The switching power supply circuit has the high frequency and high voltage traces. Since the PCB circuit design and the component layout significantly affect the power supply operation, EMI noise, and power dissipation, the high frequency trace of PCB shown in Figure 9-3 should be designed low impedance by small loop and wide trace.

Figure 9-3 High frequency current loops (hatched areas)

In addition, the PCB circuit design should be taken account as follows:

Figure 9-4 shows the circuit design example.

1) Main Circuit Trace Layout

This is the main trace containing switching currents, and thus it should be as wide trace and small loop as possible.
2) Control Ground Trace Layout

When large current flows into the control ground trace, the operation of IC might be affected by it. The control ground trace should be separate from the main circuit trace, and should be connected at a single point grounding as close to the GND pin as possible.
3) VCC Trace Layout

This is the trace for supplying power to the IC, and
thus it should be as small loop as possible. If C3 and the IC are distant from each other, placing a film capacitor C_{f} (about $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$) close to the VCC pin and the GND pin is recommended.
4) Peripheral Components for the IC Control

These components should be placed close to the IC, and be connected to the IC pin as short as possible.
5) Bootstrap Circuit Components

These components should be connected to the IC pin as short as possible, and the loop for these should be as small as possible.
6) Secondary side Rectifier Smoothing Circuit Trace Layout
This is the trace of the rectifier smoothing loop, carrying the switching current, and thus it should be as wide trace and small loop as possible.

Figure 9-4 Peripheral circuit trace example around the IC

10. Pattern Layout Example

The following show the PCB pattern layout example and the schematic of circuit using SSC3S910. The above circuit symbols correspond to these of Figure 10-1.

Figure 10-1 PCB circuit trace layout example

Figure 10-2 Circuit schematic for PCB circuit trace layout

SSC3S910

11. Reference Design of Power Supply

As an example, the following show the power supply specification, the circuit schematic, the bill of materials, and the transformer specification. The values in bill of materials are reference design. They are necessary to be adjusted based on actual operation in the application.

- Power supply specification

IC	SSC3S910
Input voltage (Output of PFC)	DC 390 V
Maximum output power	227.1 W
Output 1	$13 \mathrm{~V} / 6.7 \mathrm{~A}$
Output 2	$100 \mathrm{~V} / 1.4 \mathrm{~A}$

- Circuit schematic

- Bill of materials

Symbol	Part type		Recommended Sanken Parts
C103	Electrolytic	$450 \mathrm{~V}, 120 \mu \mathrm{~F}$	
C104	Electrolytic	$450 \mathrm{~V}, 120 \mu \mathrm{~F}$	
C201	Chip	$50 \mathrm{~V}, 0.1 \mu \mathrm{~F}, 2012$	
C202	Chip	$50 \mathrm{~V}, 1.0 \mathrm{nF}, 2012$	
C203	Ceramic	Open	
C204	Chip	$50 \mathrm{~V}, 2.2 \mathrm{nF}, 2012$	
C205	Chip	$50 \mathrm{~V}, 0.47 \mu \mathrm{~F}, 2012$	
C206	Chip	$50 \mathrm{~V}, 0.22 \mu \mathrm{~F}, 2012$	
C207	Chip	$50 \mathrm{~V}, 220 \mathrm{pF}, 2012$	
C209	Chip	$50 \mathrm{~V}, 0.22 \mu \mathrm{~F}, 2012$	
C210	Chip	$50 \mathrm{~V}, 4.7 \mathrm{nF}, 2012$	
C211	Ceramic	$1 \mathrm{kV}, 100 \mathrm{pF}$	
C212	Chip	$50 \mathrm{~V}, 1 \mu \mathrm{~F}, 2012$	
C214	Ceramic	$1 \mathrm{kV}, 100 \mathrm{pF}$	
C215	Polypropylene Film	$630 \mathrm{~V}, 27 \mathrm{nF}$	
C216	Ceramic, Y1	AC300 $\mathrm{V}, 2200 \mathrm{pF}$	
C217	Polypropylene Film	Open	
C225	Electrolytic	$50 \mathrm{~V}, 100 \mu \mathrm{~F}$,	
C301	Electrolytic	$35 \mathrm{~V}, 2200 \mu \mathrm{~F}$	
C302	Electrolytic	$200 \mathrm{~V}, 220 \mu \mathrm{~F}$	
C303	Chip	Open	

SSC3S910

Symbol	Part type	Rating	Recommended Sanken Parts
C304	Chip	Open	
C305	Chip	$50 \mathrm{~V}, 0.22 \mu \mathrm{~F}, 2012$	
C308	Electrolytic	$35 \mathrm{~V}, 2200 \mu \mathrm{~F}$	
C309	Electrolytic	Open	
C604	Electrolytic	Open	
C605	Electrolytic	Open	
C606	Chip	Open	
D202	Schottky	$40 \mathrm{~V}, 1 \mathrm{~A}, \mathrm{SJP}$	SJPB-D4
D203	Schottky	40 V, 1 A, SJP	SJPB-D4
D204	Fast recovery	$600 \mathrm{~V}, 0.5 \mathrm{~A}$, Axial	AG01A
D205	Schottky	$40 \mathrm{~V}, 1 \mathrm{~A}, \mathrm{SJP}$	SJPB-D4
D206	Fast recovery	200 V, 1 A, Axial	AL01Z
D301	Schottky	$150 \mathrm{~V}, 30 \mathrm{~A}, \mathrm{TO} 220 \mathrm{~F}$	FMEN-230A
D302	Schottky	$150 \mathrm{~V}, 30 \mathrm{~A}, \mathrm{TO} 220 \mathrm{~F}$	FMEN-230A
D303	Fast recovery	$200 \mathrm{~V}, 5 \mathrm{~A}, \mathrm{TO} 220 \mathrm{~F}$	FML-14S
D304	Fast recovery	$200 \mathrm{~V}, 5 \mathrm{~A}, \mathrm{TO} 220 \mathrm{~F}$	FML-14S
D601	Schottky	$40 \mathrm{~V}, 1 \mathrm{~A}, \mathrm{SJP}$	SJPB-D4
D602	Chip	$0 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
IC201	IC		SSC3S910
PC201	Photo-coupler	PC123 or equiv	
PC202	Photo-coupler	PC123 or equiv	
Q201	Power MOSFET	$10 \mathrm{~A}, 600 \mathrm{~V}, \mathrm{TO} 220$	
Q202	Power MOSFET	$10 \mathrm{~A}, 600 \mathrm{~V}, \mathrm{TO} 220$	
Q204	PNP transistor	$-600 \mathrm{~mA},-60 \mathrm{~V}$, SOT23	KST2907A
Q301	Shunt regulator	$\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}$ (TL431or equiv)	
Q601	PNP transistor	0.6A, -60V, SOT23	
Q602	NPN transistor	$0.6 \mathrm{~A}, 40 \mathrm{~V}$, SOT 23	
Q606	NPN transistor	0.8 A, 60 V SOT-23/TO-92	
R200	Chip	$47 \mathrm{k} \Omega \pm 5 \%, 1 / 4 \mathrm{~W}, 3216$	
R201 ${ }^{1}$	Chip	$1.0 \mathrm{M} \Omega \pm 5 \%, 1 / 4 \mathrm{~W}, 3216$	
R202*	Chip	$1.0 \mathrm{M} \Omega \pm 5 \%, 1 / 4 \mathrm{~W}, 3216$	
R203*	Chip	$1.0 \mathrm{M} \Omega \pm 5 \%, 1 / 4 \mathrm{~W}, 3216$	
R204*	Chip	$910 \mathrm{k} \Omega+47 \mathrm{k} \Omega \pm 5 \%, 1 / 4 \mathrm{~W}, 3216$	
R206	Chip	$0 \Omega \pm 5 \%, 1 / 4 \mathrm{~W}, 3216$	
R208	Chip	$22 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R209	Chip	$47 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R210	Chip	$100 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R211	Chip	$2.2 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R212	Chip	$33 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R213	Chip	$100 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R214	Chip	$10 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R215	Chip	$2.2 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R216	Chip	$47 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R217	Chip	$22 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R218	Chip	$100 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R219	Chip	$2.2 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R220	Chip	$10 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R221	Chip	$100 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R225	Chip	$150 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R230	Chip	$100 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R301	Chip	$5.6 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R302	Chip	$4.7 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	

${ }^{1}$ Resistors applied high DC voltage and of high resistance are recommended to select resistors designed against electromigration or use combinations of resistors in series for that to reduce each applied voltage, according to the requirement of the application.

Symbol	Part type		Recommended Sanken Parts
R303	Chip	$10 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R304	Chip	$2.2 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R305	Chip	Open	
R306	Chip	$22 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R307	Chip	$20 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R308*	Chip	Open	
R309*	Chip	Open	
R310	Chip	$15 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R601	Chip	$1 \mathrm{k} \Omega \pm 5 \%, 1 / 10 \mathrm{~W}, 2012$	
R602	Chip	$2.2 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R604	Chip	$4.7 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R609	Chip	Open	
R610	Chip	Open	
R613*	Chip	Open	
R614	Chip	$22 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
R615	Chip	Open	
R616	Chip	$0 \Omega \pm 5 \%, 1 / 8 \mathrm{~W}, 2012$	
T1	Transformer	See the specification	

*Resistors applied high DC voltage and of high resistance are recommended to select resistors designed against electromigration or use combinations of resistors in series for that to reduce each applied voltage, according to the requirement of the application.

- Transformer specification
- Primary inductance, $\mathrm{L}_{\mathrm{P}}: 250 \mu \mathrm{H}$
- leakage inductance, Lr : $80 \mu \mathrm{H}$
- Core size : EER-42
- Winding specification

Winding	Symbol	Number of turns (T)	Wire diameter (mm)	Construction
Primary winding	Lp	33	Litz $\varphi 0.1 \mathrm{~mm} 30$ strands	Solenoid winding
Auxiliary winding	D	3	TIW $\varphi 0.2 \mathrm{~mm}$	Space winding
Output winding 1-1	S1-1	2	Litz $\varphi 0.1 \mathrm{~mm} 70$ strands	Bifilar winding
Output winding 1-2	S1-1	2	Litz $\varphi 0.1 \mathrm{~mm} 70$ strands	Bifilar winding
Output winding 2-1	S2-1	15	Litz $\varphi 0.1 \mathrm{~mm} 30$ strands	Bifilar winding
Output winding 2-2	S2-1	15	Litz $\varphi 0.1 \mathrm{~mm} 30$ strands	Bifilar winding

IMPORTANT NOTES

- All data, illustrations, graphs, tables and any other information included in this document as to Sanken's products listed herein (the "Sanken Products") are current as of the date this document is issued. All contents in this document are subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use
- The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the "Specific Applications"). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.
- In the event of using the Sanken Products by either (i) combining other products or materials therewith or (ii) physically, chemically or otherwise processing or treating the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate or derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken's official website in relation to derating.
- No anti-radioactive ray design has been adopted for the Sanken Products.
- No contents in this document can be transcribed or copied without Sanken's prior written consent.
- The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products and Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the foregoing.
- All technical information described in this document (the "Technical Information") is presented for the sole purpose of reference of use of the Sanken Products and no license, express, implied or otherwise, is granted hereby under any intellectual property rights or any other rights of Sanken.
- Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, or implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to any information contained in this document (including its accuracy, usefulness, or reliability).
- In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.
- You must not use the Sanken Products or the Technical Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Technical Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.
- Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken's distribution network.
- Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the contents included herein.
- Please refer to the relevant specification documents in relation to particular precautions when using the Sanken Products, and refer to our official website in relation to general instructions and directions for using the Sanken Products.

This datasheet has been downloaded from: www.DatasheetCatalog.com Datasheets for electronic components.

[^0]: * The maximum frequency during normal operation is $\mathrm{f}_{(\mathrm{MAX})}=300 \mathrm{kHz}$.

